(1). Decide whether the following statements are TRUE or FALSE. Justify your answers. State precisely the results that you use.

- (a) The pull back of a trivial bundle is trivial.
- (b) The tangent bundle of \mathbb{S}^2 splits as the Whitney sum of two line bundles.

(c) $\omega(\gamma^1) = 1 + a$.

- (d) There exists a vector bundle η such that $\gamma^1 \oplus \eta$ is trivial.
- (e) The manifolds $\mathbb{RP}^2 \times \mathbb{RP}^3$ and \mathbb{S}^5 are cobordant.

Solution:

(a) True

Justification: Let $\varphi : E \to B \times V$ be a trivialization of a vector bundle $p : E \to B$. Let $f : X \to B$ be a continuous map. Then $\psi : f^*E \subseteq X \times E \xrightarrow{Id \times \varphi} X \times B \times V \to X \times V$ is a trivialization of f^*E with inverse induced by the projection $g_1 : X \times V \to X$ and the map $g_2 : X \times V \xrightarrow{f \times Id} B \times V \xrightarrow{\varphi^{-1}} E$.

(b)False Justification:

Theorem 1 (Classification of line bundles) The association $E \to \omega_1(E)$ gives a bijection between isomorphism classes of real line bundles on B and $H^1(B; \mathbb{Z}_2)$.

Theorem 2 (Hairy Ball Theorem) There is no nonvanishing continuous tangent vector field on even dimensional n-spheres.

Suppose the tangent bundle of \mathbb{S}^2 , $T\mathbb{S}^2 = L_1 \oplus L_2$, where L_1 and L_2 are line bundles over \mathbb{S}^2 . By the classification of line bundles, L_1 and L_2 are trivial bundles. This implies that there is a nonvanishing continuous tangent vector field on \mathbb{S}^2 . This is a contradiction by Hairy Ball Theorem, and therefore our assumption is wrong.

(c) True

Justification: Let γ^1 be the canonical line bundle over \mathbb{RP}^{∞} . Then we have an obvious bundle map

$$E(\gamma_1^1) \longrightarrow E(\gamma^1)$$

$$\downarrow^{\gamma_1^1} \qquad \downarrow^{\gamma_1^1} \qquad (1)$$

$$\mathbb{S}^1 = \mathbb{RP}^1 \xrightarrow{inclus} \mathbb{RP}^\infty$$

Therefore $i^*(\omega_1(\gamma^1)) = \omega_1(i^*(\gamma^1)) = \omega_1(\gamma_1^1) \neq 0$, by the axiom of the Stiefel-Whitney classes. This shows that $\omega_1(\gamma^1) = a$ is the generator of $H^1(\mathbb{RP}^\infty; \mathbb{Z}_2) \cong \mathbb{Z}_2$. Hence $\omega(\gamma^1) = \omega_0(\gamma^1) + \omega_1(\gamma^1) = 1 + a$, since the bundle is one dimensional.

(d) False

Justification: Suppose there exists a bundle $\eta: E \to \mathbb{RP}^{\infty}$ such that $\gamma^1 \oplus \eta$ is trivial. Since $\omega(\gamma^1) = 1+a$,

where a is the generator of $H^1(\mathbb{RP}^{\infty};\mathbb{Z}_2)$ and hence $\omega(E)$ must be $(1+a)^{-1} = 1 + a + a^2 + \cdots$. Since we are using \mathbb{Z}_2 coefficients. Thus $\omega_i(E) = a^i$, which is non-zero in $H^i(\mathbb{RP}^{\infty};\mathbb{Z}_2)$ for all *i*. However, this contradicts the fact that $\omega_i(E) = 0$ for $i > \dim E$.

(e) False Justification:

Theorem 3 (Pontrjagin) If B is a smooth compact (n + 1)-dimensional manifold with boundary equal to M, then the Stiefel-Whitney numbers of M are all zero.

Theorem 4 Two smooth closed n-manifolds belong to the same cobordism class if and only if all of their corresponding Stiefel-Whitney numbers are equal.

Claim: $\mathbb{RP}^2 \times \mathbb{RP}^3$ and \mathbb{S}^5 are not cobordant. Since $\omega_1(\mathbb{RP}^2 \times \mathbb{RP}^3) = \omega_1(\mathbb{RP}^2) \cup \omega_0(\mathbb{RP}^3) = 3a \cup 1 \neq 0$ in $H^1(\mathbb{RP}^2 \times \mathbb{RP}^3; \mathbb{Z}_2)$, where *a* is the generator of $H^1(\mathbb{RP}^2; \mathbb{Z}_2)$ of $\mathbb{RP}^2 \times \mathbb{RP}^3$. So not all Stiefel-Whitney numbers are 0. But $\mathbb{S}^5 = \partial \mathbb{D}^6$. So, by Theorem 3 and Theorem 4, $\mathbb{RP}^2 \times \mathbb{RP}^3$ and \mathbb{S}^5 are not cobordant.

(2).

(a). Determine the least integer k assuming that \mathbb{RP}^9 can be immersed in \mathbb{R}^{9+k} .

Solution: Now suppose that a manifold M^n of dimension n can be immersed in \mathbb{R}^{n+k} . Recall that a function $f: M^n \to \mathbb{R}^{n+k}$ is an immersion if at every point $x \in M^n$, $Df_x: T_x M \to \mathbb{R}^{n+k}$ is injective. This means that the tangent bundle TM is an n-dimensional vector bundle, and the normal bundle ν is a k-dimensional vector bundle. From the Whitney Duality theorem, $\omega_i(\nu) = \overline{\omega_i}(M^n)$. So the dual Stiefel-Whitney classes $\overline{\omega_i}(M^n) = 0$ for i > k. For $M = \mathbb{RP}^9$,

$$\omega(\mathbb{RP}^9) = 1 + a^2 + a^8$$

and

$$\overline{\omega}(\mathbb{RP}^9) = 1 + a^2 + a^4 + a^6.$$

So if \mathbb{RP}^9 can be immersed in \mathbb{R}^{9+k} , then k must be at least 6.

(b). Show that the tangent bundle of \mathbb{RP}^n has a sub bundle of rank 1 if and only if n is odd.

Solution: Since $\omega(\mathbb{RP}^n) = (1+a)^{n+1}$. If $T(\mathbb{RP}^n) = \xi \oplus \eta$ for a line bundle ξ , then we must have $\omega(\xi)\omega(\eta) = \omega(\mathbb{RP}^n) = (1+a)^{n+1}$. $\omega(\xi)$ and $\omega(\eta)$ must be order 1 and n-1 respectively(by the axioms of Stiefel-Whitney classes) so it must be the case that $\omega(\xi) = 1 + a$ or 1. If n is even, then in the first case, $\omega(\eta) = (1+a)^n$ has $\omega_n(\eta) = {n \choose n} a^n = a^n$, and in the later case $\omega_n(\eta) = {n+1 \choose n} a^n = a^n$. This contradicts the fact that for an (n-1)-bundle such as η , $\omega_n(\eta) = 0$. Thus such a splitting cannot happen. If n is odd, then $\omega_n(\mathbb{RP}^n) = 0$. This implies that $T(\mathbb{RP}^n)$ admits one global section by whose span defines a sub-bundle of dimension 1.

(c). Let $n = 2^k$. Find all the Stiefel-Whitney numbers of \mathbb{RP}^n .

Solution: $\omega(\mathbb{RP}^n) = (1+a)^{n+1} = (1+a)(1+a)^n$. Since we are working modulo 2 and $n = 2^k$. We have $(1+a)^n = 1+a^n$. So $\omega(\mathbb{RP}^n) = (1+a)(1+a)^n = 1+a+a^n+a^{n+1} = 1+a+a^n$. Thus $\omega(\mathbb{RP}^n) = 1+a+a^n$. This implies $\omega_0(\mathbb{RP}^n) = 1$, $\omega_1(\mathbb{RP}^n) = a$, $\omega_n(\mathbb{RP}^n) = a^n$ and $\omega_i(\mathbb{RP}^n) = 0 \quad \forall i \neq 0, 1, n$. So the Stiefel-Whitney numbers $\langle \omega_n(\mathbb{RP}^n), [\mathbb{RP}^n] \rangle$ and $\langle \omega_1(\mathbb{RP}^n)^n, [\mathbb{RP}^n] \rangle$ are the only non-zero in $H^n(\mathbb{RP}^n, \mathbb{Z}_2) \cong \mathbb{Z}_2$. All other Stiefel-Whitney numbers are zero.

(d). Let $k \ge 1$ be an integer and $f_k : S^1 \to S^1$ be the power map $z \mapsto z^k$. For which values of k is the bundle $f_k^*(\gamma_1^1)$ trivial?

Solution: Let γ_1^1 be the canonical line bundle over $\mathbb{RP}^1 = \mathbb{S}^1$. Since $f_k : \mathbb{S}^1 \to \mathbb{S}^1$ has degree k, then $f_k^* : H^1(\mathbb{S}^1; \mathbb{Z}_2) \to H^1(\mathbb{S}^1; \mathbb{Z}_2)$ such that $f_k^*(x) = kx$. Suppose the pull back bundle $p : f_k^*(\gamma_1^1) \to \mathbb{S}^1$ is trivial. This implies that $0 = \omega_1(f_k^*(\gamma_1^1)) = f_k^*(\omega(\gamma_1^1)) = f_k^*(a) = ka$ where $a = \omega_1(\gamma_1^1)$ is the generator of $H^1(\mathbb{S}^1; \mathbb{Z}_2) \cong \mathbb{Z}_2$. This shows that $k \equiv 0 \mod 2$